System Design and Methodology /
Embedded Systems Design

|X. Real Time Embedded Systems

TDTS07/TDDIO8
VT 2026

Ahmed Rezine

(Based on material by Petru Eles and Soheil Samii)

Institutionen for datavetenskap (IDA)
Linkopings universitet

1 of 63

REAL-TIME EMBEDDED SYSTEMS:
TASK SCHEDULING

. Real-Time Systems and Their Typical Features

. Task Scheduling Policies

. Static Cyclic Scheduling

. What is Good and Bad with Static Cyclic Scheduling
. Priority Based Preemptive Scheduling

. Schedulability Analysis

2 of 36

e ,Cnformal Specificatio

Constraints

Modeling

Y

Y
/ System

Mapping

-—

| BN
& |Arch. Selection - System model =<

nD‘

oy

Functional
Simulation

Formal
Verification

~

~

R e ——

{

\architfcture J
(| Estimation 4

Scheduling =

Y

Mapped and

\

~

not OK

Simulation

—
-y
—
—
—
~ -
—

> OK

(Softw. moderj—;

Simulation

Softw. Generation

- -
—
—

—
g
—

Simulation

y OK
Fabrication

not OK

Formal
Verification

not OK C
scheduled model
N)ﬁ

<—<Hardw. model)
Y

Hardw. Synthesis

-«—(Hardw. blocks)

Testinh PrototypeAJ/

3 of 36

Real-Time Systems

m Many (most) embedded systems are real-time systems.

0 Areal-time system is a computer system in which the correctness of the
system behavior depends not only on the logical results of the
computations but also on the time when the results are produced.

Examples:

d Process control systems

0 Computer-integrated manufacturing
systems

0 Aerospace and avionics systems
0 Automotive electronics

o a o o a Q

Medical equipment
Nuclear power plant control
Defence systems
Consumer electronics
Multimedia
Telecommunications

4 of 36

Real-Time Systems: Some Typical Features

m They are time-critical.

The failure to meet time constraints can lead to degradation of the service or to
catastrophe.

m They are made up of concurrent tasks.

The tasks share resources (e.g. processor) and communicate to each other. This
makes scheduling of tasks a central problem.

m Reliability and fault tolerance are essential.

Many applications are safety critical.

5 of 36

Soft and Hard Real-Time Systems

m Time constraints are often expressed as deadlines at which tasks have to
complete their execution.

A deadline imposed on a task can be:

6 of 36

Soft and Hard Real-Time Systems

m Time constraints are often expressed as deadlines at which tasks have to
complete their execution.

A deadline imposed on a task can be:

0 Hard deadline: has to be met strictly, if not = "catastrophe”. Has
to be guaranteed at design time!

7 of 36

Soft and Hard Real-Time Systems

m Time constraints are often expressed as deadlines at which tasks have to
complete their execution.

A deadline imposed on a task can be:

0 Hard deadline: has to be met strictly, if not = "catastrophe”. Has
to be guaranteed at design time!

0 Soft deadlines: tasks can finish after their deadline, although the value
provided by completion may degrade with time.

8 of 36

Soft and Hard Real-Time Systems

m Time constraints are often expressed as deadlines at which tasks have to
complete their execution.

A deadline imposed on a task can be:

0 Hard deadline: has to be met strictly, if not = "catastrophe”. Has
to be guaranteed at design time!

0 Soft deadlines: tasks can finish after their deadline, although the value
provided by completion may degrade with time. (Deadline miss ratio is often
a key metric and is linked with Quality-of-Service of an application)

o Firm deadlines: similar to hard deadlines, but if the deadline is missed there
is no catastrophe; only the result produced is of no use any more.

9 of 36

Predictability

m Predictability is a very important property of any real-time system.

m Predictability means that it is possible to guarantee that deadlines are met as
imposed by requirements:

0 Hard deadlines are always fulfilled.

0 Soft deadlines are fulfilled to a degree which is sufficient for the
required quality of service.

10 of 36

Predictability

Some problems concerning predictability:

m Determine worst case execution times for each task.

m Determine worst case communication delays on the interconnection
network.

m Determine time overheads due to operating system (interrupt handling, task
management, context switch, etc.).

11 of 36

Predictability

Some problems concerning predictability:

m Determine worst case execution times for each task.

m Determine worst case communication delays on the interconnection
network.

m Determine time overheads due to operating system (interrupt handling, task
management, context switch, etc.).

0 After the above problems have been solved, comes the "big question™:

Can the given tasks and their related communications be scheduled on the
available resources (processors, buses), so that deadlines are satisfied?

12 of 36

Task Scheduling

The scheduling problem:

Which task and communication has to be executed at a certain moment on a given
processor or bus respectively, so that time constraints are fulfilled?

m A set of tasks is schedulable if, given a certain scheduling policy, all constraints

will be completed (which means, a solution to the scheduling problem can be
found).

m Atleast for hard real-time systems, it is needed to check off-line, in advance, if the
system is schedulable.

13 of 36

Task Parameters

\What do we assume to know about a task?

m Computation time (worst case computation time), c.
For communication, we assume to know communication time.

m Deadline for task completion, d.
m Regularity of task arrival:

0 periodic tasks, with period T (infinite sequence of identical activities).

0 aperiodic tasks: no fixed period of arrival

- §poradic tasks: bound minimum inter-arrival time — deadlines can
be guaranteed off-line.

- If no bounds on inter-arrival time are known, schedulability cannot be
guaranteed.

14 of 36

Scheduling Policies

m Static cyclic scheduling

A table is generated off-line containing activation times for each task
(communication). The activation sequence captured by the table is repeated

cyclically.

15 of 36

Scheduling Policies

m Static cyclic scheduling

A table is generated off-line containing activation times for each task
(communication). The activation sequence captured by the table is repeated
cyclically.

m Priority based scheduling

Tasks are activated in response to a certain event. In case of conflict (several tasks
ready to execute on the same processor), priorities are considered.

16 of 36

Scheduling Policies

m Preemptive scheduling

3 A running task can be interrupted in order to execute another task.

m Non-preemptive scheduling

0 A task, once started, may not be stopped.

17 of 36

Static Cyclic Scheduling

m Generate activation times for each task instance:

0 These times determine the task activations over a (hyper)period 7.
0 This sequence of activations is repeated in a cyclic manner.

- If all tasks have the same period T= T"=T.

- If the tasks have different periods T+, To, ..., T, = T"=LCM(T4, T>, ..., T;).

18 of 36

Static Cyclic Scheduling: Example

Period=deadline

(4
2
3

4
System management

10
20
40
40
10

Worst case comp. time

W hrEDN

T = LCM(10, 20, 40) = 40

19 of 36

Static Cyclic Scheduling: Example

Period=deadline Worst case comp. time

1 10 2
2 20 4
3 40 3
7 40 5
System management 10 1 T"=LCM(10, 20, 40) = 40
10 20 30 40

| | | |

r]]]] :

| | | |

T :

2072 i 22 | i

| | | |

e ! ' f

& 6 ; | ;

| | | |

A ! f

“ 12 ; ; ;

| | | |

int - 4 o3 -

Static Cyclic Scheduling: Example

Period=deadline Worst case comp. time

(g 10 2
(%) 20 4
3 40 3
7% 40 an
System management 10 1 T"=LCM(10, 20, 40) = 40
10 20 30 40
| | | |
r]]]] :
| | | |
T :
202 i 22 ; ;
| | | |
[! ' f ?
& 6 ; | ; =
o :) ;
“ 12 i : |
| | | |
int - 4 o) -

Static Cyclic Scheduling: Example

Period=deadline Worst case comp. time

1 10 2
(%) 20 4
3 40 @3
7 40
System management 10 1 T"=LCM(10, 20, 40) = 40
10 20 30 40
I I | I
, I]]] :
I I | I
T I
212 i 22 ; ;
I I | I
I | | I
"3 6 ; | ;
I I | I
] |] »
4 12 | 26 - 32 ;
I I | I
int. s! 15 - 35

Static Cyclic Scheduling

m Often we have to schedule data dependent tasks; the platform may consist of
several processor nodes. Example earlier lecture:

T

J
Time 0 2 4 6 810 1214 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54
T, [T3 T, T, Tg
<r5 ——
K T2 T5 T4
\/T Ciz G Cs7 Cy.g

k_,@"

23 of 36

What is Good with Static Cyclic Scheduling?

High predictability
Easy to debug

Low execution time overhead (not much to do for the real-time kernel during
execution time)

24 of 36

What is Bad with Static Cyclic Scheduling?

Not flexible:

d quality degrades rapidly if periods and execution times deviate from those
predicted;
0 if new tasks are added, the whole schedule has to be regenerated.

Urgent events (interrupts) are handled purely:
0 time slots are statically allocated for polling and handling such events.

Very long hyper-periods have to be avoided:

0 the periods of individual tasks have to be adjusted;
this can lead to artificially reduced periods = artificially increased load
— waste of processor time.

Tasks have to be “manually” split, in order to fit into available slots.

25 of 36

Priority Based Preemptive Scheduling

m No schedule (predetermined activation times) is generated off-line. Tasks are
activated as response to events (e.g. arrival of a signal, message, etc.).

m At any given time the highest priority ready task is running.

If several tasks are ready to be activated on a processor, the highest priority task
will be executed.

m Tasks can be preempted at any moment.

If a task becomes ready to be executed (the respective event has occurred), and
it has a higher priority than the running task, the running task will be preempted
and the new one will execute.

26 of 36

Priority Based Preemptive Scheduling

m No schedule (predetermined activation times) is generated off-line. Tasks are
activated as response to events (e.g. arrival of a signal, message, etc.).

m At any given time the highest priority ready task is running.

If several tasks are ready to be activated on a processor, the highest priority task
will be executed.

m Tasks can be preempted at any moment.

If a task becomes ready to be executed (the respective event has occurred), and
it has a higher priority than the running task, the running task will be preempted
and the new one will execute.

m | Will the tasks meet their deadlines?
Schedulability analysis tries to answer this question.

27 of 36

Schedulability Analysis

m As result of research in real-time systems, a mathematical apparatus has been
developed or schedulability analysis.

These results are in form of conditions which can be used in order to check if a
certain task set is schedulable (all tasks meet their deadline) or not.

m Schedulability analysis can be based on
0 Sufficient conditions (sometimes too pessimistic).

0 Necessary and sufficient conditions (sometimes difficult to apply).

m We will show some of the simpler formulas, only to give a “feeling”.

28 of 36

Schedulability Analysis

Example from
previous lecture: Period T1=100 us

1P Task 71 «
- -
e @ -

WCET C1 =40 us

[Period T, = 30 s
Task o <
WCET C, = 10 s

-

Does this work? ,
Can each of the tasks work at the Period T3 =25 us
required rate (period)? Task 73 <

WCET C3 =10 18

v

m 74 needsto run for40 us every 100 us: 40% of CPU
m 7 needs torunfor 10 us every 30 us: 33% of CPU v Total: 113%
m 73 needs torunfor 10 us every 25 us: 40% of CPU This will not work!

’ 29 of 36

Schedulability Analysis

Example from
previous lecture: Period T1=100 us

1P Task 71 «
- -
e @ -

WCET C1 =10 us

[Period T, = 30 s
Task o <
WCET C, = 10 s

-

Does this work? ,
Can each of the tasks work at the Period T3 =25 us

required rate (period)? Task 73 <
WCET C3 =10 s

v

But what if the Total Utilisation is less/equal 100% ?
Will it always work? (Deadline = Period)

30 of 36

Schedulability Analysis

Example from
previous lecture: Period T1=100 us

1P Task 71 «
- -
e @ -

WCET Cq = 10 us

[Period T, = 30 s
Task o <
WCET C, = 10 s

-

Does this work? ,
Can each of the tasks work at the Period T3 =25 us
required rate (period)? Task 73 <

WCET C3 =10 18

v

But what if the Total Utilisation is less/equal 100% ?
Will it always work? (Deadline = Period)

DEPENDS!

31 of 36

Schedulability Analysis

m A set of ntasks, with period T; and worst case execution time c;. Their

deadline is equal with their period: d; = T,.

At any moment the run-time monitor lets the task with the closest deadline run
(EDF: Earliest Deadline First scheduling).

32 of 36

Schedulability Analysis

A set of n tasks, with period T; and worst case execution time c;. Their

deadline is equal with their period: d; = T,.

At any moment the run-time monitor lets the task with the closest deadline run
(EDF: Earliest Deadline First scheduling).

With EDF a sufficient and necessary condition for the task set to be

schedulable is that the total processor load is below/equal 100%:

C
L <
T,

h

1

33 of 36

Schedulability Analysis

m A set of ntasks, with period T; and worst case execution time c;. Their

deadline is equal with their period: d; = T,.

Task priorities are statically assigned to tasks (by the designer or operating
system), according to their period: the task with shorter period gets the higher
priority. This is called Rate Monotonic (RM) scheduling.

(This is different from EDF!)

m A sufficient (not necessary) condition for the task set to be schedulable:

)

. (.
DAL
P S A

(This is called the ‘utilization bound’)

34 of 36

Utilization Bound (Rate Monotonic Scheduling)

100.0%
95.0%

90.0%

©
c
=
_8 85.0%
- Maximum utilization 69-70% for
(o]
S oo large number of tasks
N
i /

75.0%

70.0% —

65.0%

0 5 10 15 20 25 30 35

Number of tasks

Schedulability Analysis

m A set of n tasks, with period T; and worst case execution time c;. Arbitrary

deadline: d; <T; (This is different from the previous cases!)

Task priorities are statically assigned, by the designer, and can be arbitrary.

For example: Deadline Monotonic (DM) scheduling, where task priorities are
assigned based on task deadlines (and not periods!)

36 of 36

Schedulability Analysis

m A set of n tasks, with period T; and worst case execution time c;. Arbitrary

deadline: d; <T; (This is different from the previous cases!)

Task priorities are statically assigned, by the designer, and can be arbitrary.

m The response time for each task can be calculated based on the following
recurrence relation:

This is the
PN interference
/’ r; R /from higher
i TS i Z {T—lck\ priority tasks.
‘\ Vk € hp . k ,'

\—_—’

m A necessary and sufficient condition for schedulability: r; <d;

37 of 36

Schedulability Analysis

{ r;] Period T1 =100 uis Period To =30 us Period T3 =25 us
&
k
WCET C1 =10 us WCETCo=10us WCET C3=10 us

LOW Priority MEDIUM Priority HIGH PRIORITY

Let us calculate the worst-case response time of Task 1:

Worst- .
r1=C i+ceilr 1/T 2)*C 2+ @/ T—B)E’*froor?:[racglfe?)mterference

0 + ceil(r_1/30)* 10 + ceil(r_1/25)* 10
0* (1 +ceil(r_1/30)+ceil(r_1/25))

1
1

r 1
r 1

Fixed-point iteration:
r 1,k+1=10* (1 + ceil(r_1,k/30) + ceil(r_1,k/25))

Initialize with execution time of Task 1 and start iteration.
Continue as long calculated response time is larger than previous iteration.

38 of 36

Schedulability Analysis

Fixed-point iteration:

r 1,k+1=10* (1 +ceil(r_1,k/30) + ceil(r_1,k/25))

r 1,0=C_1=10

r 1,1=10*(1+ceil(10/30) + ceil(10/25))=10*(1+1+1)=30

r 1,2=10*(1+ceil(30/30) + ceil(30/25))=10*(1+1+2)=40

r 1,3=10*(1 +ceil(40/30) + ceil(40/25))=10*(1+2+2)=350

r 1,4=10*(1+ceil(d0/30) + ceil(d0/25))=10*(1 + 2+ 2) =50 STOP!
Worst-case response time of task 1 is 50.

Less than the deadline (period) that is 100.

Task 1 is schedulable!
Repeat the process for Task 2 (simpler equation) and Task 3 (trivial).

39 of 36

Schedulability Analysis

m Schedulability conditions exist today that handle more general systems:

0 Deadlines which can be larger than the period
0 Tasks with share critical resources

0 Multiprocessors

40 of 36

	Slide 1: System Design and Methodology / Embedded Systems Design IX. Real Time Embedded Systems
	Slide 2: REAL-TIME EMBEDDED SYSTEMS: TASK SCHEDULING
	Slide 3
	Slide 4: Real-Time Systems
	Slide 5: Real-Time Systems: Some Typical Features
	Slide 6: Soft and Hard Real-Time Systems
	Slide 7: Soft and Hard Real-Time Systems
	Slide 8: Soft and Hard Real-Time Systems
	Slide 9: Soft and Hard Real-Time Systems
	Slide 10: Predictability
	Slide 11: Predictability
	Slide 12: Predictability
	Slide 13: Task Scheduling
	Slide 14: Task Parameters
	Slide 15: Scheduling Policies
	Slide 16: Scheduling Policies
	Slide 17: Scheduling Policies
	Slide 18: Static Cyclic Scheduling
	Slide 19: Static Cyclic Scheduling: Example
	Slide 20: Static Cyclic Scheduling: Example
	Slide 21: Static Cyclic Scheduling: Example
	Slide 22: Static Cyclic Scheduling: Example
	Slide 23: Static Cyclic Scheduling
	Slide 24: What is Good with Static Cyclic Scheduling?
	Slide 25: What is Bad with Static Cyclic Scheduling?
	Slide 26: Priority Based Preemptive Scheduling
	Slide 27: Priority Based Preemptive Scheduling
	Slide 28: Schedulability Analysis
	Slide 29: Schedulability Analysis
	Slide 30: Schedulability Analysis
	Slide 31: Schedulability Analysis
	Slide 32: Schedulability Analysis
	Slide 33: Schedulability Analysis
	Slide 34: Schedulability Analysis
	Slide 35: Utilization Bound (Rate Monotonic Scheduling)
	Slide 36: Schedulability Analysis
	Slide 37: Schedulability Analysis
	Slide 38: Schedulability Analysis
	Slide 39: Schedulability Analysis
	Slide 40: Schedulability Analysis

