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REAL-TIME EMBEDDED SYSTEMS: 

TASK SCHEDULING

1. Real-Time Systems and Their Typical Features

2. Task Scheduling Policies

3. Static Cyclic Scheduling

4. What is Good and Bad with Static Cyclic Scheduling

5. Priority Based Preemptive Scheduling

6. Schedulability Analysis
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Real-Time Systems

◼ Many (most) embedded systems are real-time systems.

 A real-time system is a computer system in which the correctness of the 

system behavior depends not only on the logical results of the 

computations but also on the time when the results are produced.

Examples:

 Process control systems

 Computer-integrated manufacturing 

systems

 Aerospace and avionics systems

 Automotive electronics

 Medical equipment

 Nuclear power plant control

 Defence systems

 Consumer electronics

 Multimedia

 Telecommunications
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Real-Time Systems: Some Typical Features

◼ They are time-critical.

The failure to meet time constraints can lead to degradation of the service or to 

catastrophe.

◼ They are made up of concurrent tasks.

The tasks share resources (e.g. processor) and communicate to each other. This 

makes scheduling of tasks a central problem.

◼ Reliability and fault tolerance are essential. 

Many applications are safety critical.
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Soft and Hard Real-Time Systems

◼ Time constraints are often expressed as deadlines at which tasks have to 

complete their execution.

A deadline imposed on a task can be:
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Soft and Hard Real-Time Systems

◼ Time constraints are often expressed as deadlines at which tasks have to 

complete their execution.

A deadline imposed on a task can be:

 Hard deadline: has to be met strictly, if not  "catastrophe". Has 

to be guaranteed at design time!
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provided by completion may degrade with time.
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Soft and Hard Real-Time Systems

◼ Time constraints are often expressed as deadlines at which tasks have to 

complete their execution.

A deadline imposed on a task can be:

 Hard deadline: has to be met strictly, if not  "catastrophe". Has 

to be guaranteed at design time!

 Soft deadlines: tasks can finish after their deadline, although the value 

provided by completion may degrade with time. (Deadline miss ratio is often

a key metric and is linked with Quality-of-Service of an application)

 Firm deadlines: similar to hard deadlines, but if the deadline is missed there 

is no catastrophe; only the result produced is of no use any more.
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Predictability

◼ Predictability is a very important property of any real-time system.

◼ Predictability means that it is possible to guarantee that deadlines are met as 

imposed by requirements:

 Hard deadlines are always fulfilled.

 Soft deadlines are fulfilled to a degree which is sufficient for the 

required quality of service.
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Predictability

Some problems concerning predictability:

◼ Determine worst case execution times for each task.

◼ Determine worst case communication delays on the interconnection 

network.

◼ Determine time overheads due to operating system (interrupt handling, task 

management, context switch, etc.).
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Predictability

Some problems concerning predictability:

◼ Determine worst case execution times for each task.

◼ Determine worst case communication delays on the interconnection 

network.

◼ Determine time overheads due to operating system (interrupt handling, task 

management, context switch, etc.).

 After the above problems have been solved, comes the "big question":

Can the given tasks and their related communications be scheduled on the 

available resources (processors, buses), so that deadlines are satisfied?
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Task Scheduling

The scheduling problem:

Which task and communication has to be executed at a certain moment on a given 

processor or bus respectively, so that time constraints are fulfilled?

◼ A set of tasks is schedulable if, given a certain scheduling policy, all constraints 

will be completed (which means, a solution to the scheduling problem can be 

found).

◼ At least for hard real-time systems, it is needed to check off-line, in advance, if the 

system is schedulable.
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Task Parameters

What do we assume to know about a task?

◼ Computation time (worst case computation time), c.

For communication, we assume to know communication time.

◼ Deadline for task completion, d.

◼ Regularity of task arrival:

 periodic tasks, with period T (infinite sequence of identical activities).

 aperiodic tasks: no fixed period of arrival

- sporadic tasks: bound minimum inter-arrival time  deadlines can 

be guaranteed off-line.

- If no bounds on inter-arrival time are known, schedulability cannot be 

guaranteed.
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Scheduling Policies

◼ Static cyclic scheduling

A table is generated off-line containing activation times for each task 

(communication). The activation sequence captured by the table is repeated 

cyclically.
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Scheduling Policies

◼ Static cyclic scheduling

A table is generated off-line containing activation times for each task 

(communication). The activation sequence captured by the table is repeated 

cyclically.

◼ Priority based scheduling

Tasks are activated in response to a certain event. In case of conflict (several tasks 

ready to execute on the same processor), priorities are considered.
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Scheduling Policies

◼ Preemptive scheduling

 A running task can be interrupted in order to execute another task.

◼ Non-preemptive scheduling

 A task, once started, may not be stopped.



18 of 36

Static Cyclic Scheduling

◼ Generate activation times for each task instance:

 These times determine the task activations over a (hyper)period Th.

 This sequence of activations is repeated in a cyclic manner.

- If all tasks have the same period T  Th = T.

- If the tasks have different periods T1, T2, ..., Tn  Th = LCM(T1, T2, ...,Tn).
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Static Cyclic Scheduling: Example

Period=deadline Worst case comp. time

1 10 2

2 20 4

3 40 3

4 40 5

System management 10 1 Th = LCM(10, 20, 40) = 40
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Period=deadline Worst case comp. time
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Static Cyclic Scheduling

◼ Often we have to schedule data dependent tasks; the platform may consist of 

several processor nodes. Example earlier lecture:

T1

T8

T7

T3

T5 T6

T4

T2

T1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54Time

p3

p4 

bus

T3 T8

T2

T6 T7

T5 T4

C1-2
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What is Good with Static Cyclic Scheduling?

◼ High predictability

◼ Easy to debug

◼ Low execution time overhead (not much to do for the real-time kernel during 

execution time)
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What is Bad with Static Cyclic Scheduling?

◼ Not flexible:

 quality degrades rapidly if periods and execution times deviate from those 

predicted;

 if new tasks are added, the whole schedule has to be regenerated.

◼ Urgent events (interrupts) are handled purely:

 time slots are statically allocated for polling and handling such events.

◼ Very long hyper-periods have to be avoided:

 the periods of individual tasks have to be adjusted;

this can lead to artificially reduced periods  artificially increased load

 waste of processor time.

◼ Tasks have to be “manually” split, in order to fit into available slots.
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Priority Based Preemptive Scheduling

◼ No schedule (predetermined activation times) is generated off-line. Tasks are 

activated as response to events (e.g. arrival of a signal, message, etc.).

◼ At any given time the highest priority ready task is running.

If several tasks are ready to be activated on a processor, the highest priority task 

will be executed.

◼ Tasks can be preempted at any moment.

If a task becomes ready to be executed (the respective event has occurred), and 

it has a higher priority than the running task, the running task will be preempted 

and the new one will execute.



Priority Based Preemptive Scheduling

◼ No schedule (predetermined activation times) is generated off-line. Tasks are 

activated as response to events (e.g. arrival of a signal, message, etc.).

◼ At any given time the highest priority ready task is running.

If several tasks are ready to be activated on a processor, the highest priority task 

will be executed.

◼ Tasks can be preempted at any moment.

If a task becomes ready to be executed (the respective event has occurred), and 

it has a higher priority than the running task, the running task will be preempted 

and the new one will execute.

◼ Will the tasks meet their deadlines?

Schedulability analysis tries to answer this question.
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Schedulability Analysis

◼ As result of research in real-time systems, a mathematical apparatus has been 

developed or schedulability analysis.

These results are in form of conditions which can be used in order to check if a 

certain task set is schedulable (all tasks meet their deadline) or not.

◼ Schedulability analysis can be based on

 Sufficient conditions (sometimes too pessimistic).

 Necessary and sufficient conditions (sometimes difficult to apply).

◼ We will show some of the simpler formulas, only to give a “feeling”.



Schedulability Analysis

Example from 

previous lecture:

P

2 1

3

Does this work?

Can each of the tasks work at the 

required rate (period)?

◼ 1 needs to run for 40 s every 100 s: 40% of CPU

◼ 2 needs to run for 10 s every 30 s: 33% of CPU

◼ 3 needs to run for 10 s every 25 s: 40% of CPU

Total: 113%

This will not work!

Task 1

Period T1 = 100 s

WCET C1 = 40 s

Task 2

Period T2 = 30 s

WCET C2 = 10 s

Task 3
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Period T3 = 25 s

WCET C3 = 10 s



Schedulability Analysis

Example from

previous lecture:

P

2 1

3

Does this work?

Can each of the tasks work at the 

required rate (period)?

But what if the Total Utilisation is less/equal 100% ? 

Will it always work? (Deadline = Period)

Task 1

Period T1 = 100 s

WCET C1 = 10 s

Task 2

Period T2 = 30 s

WCET C2 = 10 s

Task 3
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Period T3 = 25 s

WCET C3 = 10 s



Schedulability Analysis

Example from

previous lecture:

P

2 1

3

Does this work?

Can each of the tasks work at the 

required rate (period)?

But what if the Total Utilisation is less/equal 100% ? 

Will it always work? (Deadline = Period)

DEPENDS!

Task 1

Period T1 = 100 s

WCET C1 = 10 s

Task 2

Period T2 = 30 s

WCET C2 = 10 s

Task 3
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Period T3 = 25 s

WCET C3 = 10 s
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Schedulability Analysis

◼ A set of n tasks, with period Ti and worst case execution time ci. Their 

deadline is equal with their period: di = Ti.

At any moment the run-time monitor lets the task with the closest deadline run 

(EDF: Earliest Deadline First scheduling).
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Schedulability Analysis

◼ A set of n tasks, with period Ti and worst case execution time ci. Their 

deadline is equal with their period: di = Ti.

At any moment the run-time monitor lets the task with the closest deadline run 

(EDF: Earliest Deadline First scheduling).

◼ With EDF a sufficient and necessary condition for the task set to be 

schedulable is that the total processor load is below/equal 100%:

ci

i = 1 
Ti

n

 ----  1
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Schedulability Analysis

◼ A set of n tasks, with period Ti and worst case execution time ci. Their 

deadline is equal with their period: di = Ti.

Task priorities are statically assigned to tasks (by the designer or operating 

system), according to their period: the task with shorter period gets the higher 

priority. This is called Rate Monotonic (RM) scheduling.

(This is different from EDF!)

◼ A sufficient (not necessary) condition for the task set to be schedulable:

(This is called the ‘utilization bound’)

c
i

i = 1 
Ti

1

 

 n 
n  -- 

 ----  n2 – 1



Utilization Bound (Rate Monotonic Scheduling)

Maximum utilization 69-70% for 

large number of tasks
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Schedulability Analysis

◼ A set of n tasks, with period Ti and worst case execution time ci. Arbitrary 

deadline: di  Ti (This is different from the previous cases!)

Task priorities are statically assigned, by the designer, and can be arbitrary.

For example: Deadline Monotonic (DM) scheduling, where task priorities are 

assigned based on task deadlines (and not periods!)



Schedulability Analysis

◼ A set of n tasks, with period Ti and worst case execution time ci. Arbitrary 

deadline: di  Ti (This is different from the previous cases!)

Task priorities are statically assigned, by the designer, and can be arbitrary.

◼ The response time for each task can be calculated based on the following

recurrence relation:

◼ A necessary and sufficient condition for schedulability: ri  di

i i
r = c +

ri

Tk
----- c

k

i
k  hp



This is the 

interference 

from higher 

priority tasks.
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Schedulability Analysis

Let us calculate the worst-case response time of Task 1:

r_1 = C_i + ceil(r_1 / T_2) * C_2 + ceil(r_1 / T_3) * C_3

r_1 = 10 + ceil(r_1 / 30) * 10 + ceil(r_1 / 25) * 10

r_1 = 10 * ( 1 + ceil(r_1 / 30) + ceil(r_1 / 25) )

Fixed-point iteration:

r_1,k+1 = 10 * ( 1 + ceil(r_1,k / 30) + ceil(r_1,k / 25) )

Initialize with execution time of Task 1 and start iteration.

Continue as long calculated response time is larger than previous iteration.

i i
r = c +

ri

Tk
----- c

k

i
k  hp


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Period T1 = 100 s

WCET C1 = 10 s

LOW Priority

Period T2 = 30 s

WCET C2 = 10 s

MEDIUM Priority

Period T3 = 25 s

WCET C3 = 10 s

HIGH PRIORITY

Worst-case interference

from Task 3



Schedulability Analysis

Fixed-point iteration:

r_1,k+1 = 10 * ( 1 + ceil(r_1,k / 30) + ceil(r_1,k / 25) )

r_1,0 = C_1 = 10

r_1,1 = 10 * ( 1 + ceil(10 / 30) + ceil(10 / 25) ) = 10 * (1 + 1 + 1) = 30

r_1,2 = 10 * ( 1 + ceil(30 / 30) + ceil(30 / 25) ) = 10 * (1 + 1 + 2) = 40

r_1,3 = 10 * ( 1 + ceil(40 / 30) + ceil(40 / 25) ) = 10 * (1 + 2 + 2) = 50

r_1,4 = 10 * ( 1 + ceil(50 / 30) + ceil(50 / 25) ) = 10 * (1 + 2 + 2) = 50 STOP!

Worst-case response time of task 1 is 50.

Less than the deadline (period) that is 100.

Task 1 is schedulable! 

Repeat the process for Task 2 (simpler equation) and Task 3 (trivial).
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Schedulability Analysis

◼ Schedulability conditions exist today that handle more general systems:

 Deadlines which can be larger than the period

 Tasks with share critical resources

 Multiprocessors
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