
System Design and Methodology /

Embedded Systems Design

IX. Real Time Embedded Systems

1 of 63

TDTS07/TDDI08

VT 2026

Ahmed Rezine

(Based on material by Petru Eles and Soheil Samii)

Institutionen för datavetenskap (IDA)

Linköpings universitet

REAL-TIME EMBEDDED SYSTEMS:

TASK SCHEDULING

1. Real-Time Systems and Their Typical Features

2. Task Scheduling Policies

3. Static Cyclic Scheduling

4. What is Good and Bad with Static Cyclic Scheduling

5. Priority Based Preemptive Scheduling

6. Schedulability Analysis

2 of 36

System model

Prototype

Informal Specification,
Constraints

Functional
Simulation

Modeling

Testing

Arch. Selection

Mapping
System

architecture

Estimation

Mapped and
scheduled model

Scheduling

OK

 not OK

OK

Fabrication
not OK

Formal
Verification

Softw. model

not OK

Simulation

Formal
Verification

Hardw. model

Softw. Generation Hardw. Synthesis

Softw. blocks Hardw. blocks

Simulation

Simulation

3 of 36

4 of 36

Real-Time Systems

◼ Many (most) embedded systems are real-time systems.

 A real-time system is a computer system in which the correctness of the

system behavior depends not only on the logical results of the

computations but also on the time when the results are produced.

Examples:

 Process control systems

 Computer-integrated manufacturing

systems

 Aerospace and avionics systems

 Automotive electronics

 Medical equipment

 Nuclear power plant control

 Defence systems

 Consumer electronics

 Multimedia

 Telecommunications

5 of 36

Real-Time Systems: Some Typical Features

◼ They are time-critical.

The failure to meet time constraints can lead to degradation of the service or to

catastrophe.

◼ They are made up of concurrent tasks.

The tasks share resources (e.g. processor) and communicate to each other. This

makes scheduling of tasks a central problem.

◼ Reliability and fault tolerance are essential.

Many applications are safety critical.

6 of 36

Soft and Hard Real-Time Systems

◼ Time constraints are often expressed as deadlines at which tasks have to

complete their execution.

A deadline imposed on a task can be:

7 of 36

Soft and Hard Real-Time Systems

◼ Time constraints are often expressed as deadlines at which tasks have to

complete their execution.

A deadline imposed on a task can be:

 Hard deadline: has to be met strictly, if not  "catastrophe". Has

to be guaranteed at design time!

8 of 36

Soft and Hard Real-Time Systems

◼ Time constraints are often expressed as deadlines at which tasks have to

complete their execution.

A deadline imposed on a task can be:

 Hard deadline: has to be met strictly, if not  "catastrophe". Has

to be guaranteed at design time!

 Soft deadlines: tasks can finish after their deadline, although the value

provided by completion may degrade with time.

9 of 36

Soft and Hard Real-Time Systems

◼ Time constraints are often expressed as deadlines at which tasks have to

complete their execution.

A deadline imposed on a task can be:

 Hard deadline: has to be met strictly, if not  "catastrophe". Has

to be guaranteed at design time!

 Soft deadlines: tasks can finish after their deadline, although the value

provided by completion may degrade with time. (Deadline miss ratio is often

a key metric and is linked with Quality-of-Service of an application)

 Firm deadlines: similar to hard deadlines, but if the deadline is missed there

is no catastrophe; only the result produced is of no use any more.

10 of 36

Predictability

◼ Predictability is a very important property of any real-time system.

◼ Predictability means that it is possible to guarantee that deadlines are met as

imposed by requirements:

 Hard deadlines are always fulfilled.

 Soft deadlines are fulfilled to a degree which is sufficient for the

required quality of service.

11 of 36

Predictability

Some problems concerning predictability:

◼ Determine worst case execution times for each task.

◼ Determine worst case communication delays on the interconnection

network.

◼ Determine time overheads due to operating system (interrupt handling, task

management, context switch, etc.).

12 of 36

Predictability

Some problems concerning predictability:

◼ Determine worst case execution times for each task.

◼ Determine worst case communication delays on the interconnection

network.

◼ Determine time overheads due to operating system (interrupt handling, task

management, context switch, etc.).

 After the above problems have been solved, comes the "big question":

Can the given tasks and their related communications be scheduled on the

available resources (processors, buses), so that deadlines are satisfied?

13 of 36

Task Scheduling

The scheduling problem:

Which task and communication has to be executed at a certain moment on a given

processor or bus respectively, so that time constraints are fulfilled?

◼ A set of tasks is schedulable if, given a certain scheduling policy, all constraints

will be completed (which means, a solution to the scheduling problem can be

found).

◼ At least for hard real-time systems, it is needed to check off-line, in advance, if the

system is schedulable.

14 of 36

Task Parameters

What do we assume to know about a task?

◼ Computation time (worst case computation time), c.

For communication, we assume to know communication time.

◼ Deadline for task completion, d.

◼ Regularity of task arrival:

 periodic tasks, with period T (infinite sequence of identical activities).

 aperiodic tasks: no fixed period of arrival

- sporadic tasks: bound minimum inter-arrival time  deadlines can

be guaranteed off-line.

- If no bounds on inter-arrival time are known, schedulability cannot be

guaranteed.

15 of 36

Scheduling Policies

◼ Static cyclic scheduling

A table is generated off-line containing activation times for each task

(communication). The activation sequence captured by the table is repeated

cyclically.

16 of 36

Scheduling Policies

◼ Static cyclic scheduling

A table is generated off-line containing activation times for each task

(communication). The activation sequence captured by the table is repeated

cyclically.

◼ Priority based scheduling

Tasks are activated in response to a certain event. In case of conflict (several tasks

ready to execute on the same processor), priorities are considered.

17 of 36

Scheduling Policies

◼ Preemptive scheduling

 A running task can be interrupted in order to execute another task.

◼ Non-preemptive scheduling

 A task, once started, may not be stopped.

18 of 36

Static Cyclic Scheduling

◼ Generate activation times for each task instance:

 These times determine the task activations over a (hyper)period Th.

 This sequence of activations is repeated in a cyclic manner.

- If all tasks have the same period T  Th = T.

- If the tasks have different periods T1, T2, ..., Tn  Th = LCM(T1, T2, ...,Tn).

19 of 36

Static Cyclic Scheduling: Example

Period=deadline Worst case comp. time

1 10 2

2 20 4

3 40 3

4 40 5

System management 10 1 Th = LCM(10, 20, 40) = 40

Static Cyclic Scheduling: Example

Period=deadline Worst case comp. time

1 10 2

2 20 4

3 40 3

4 40 5

System management 10 1

1

2

3

4

10 20 30 40

2

int.
399 19 29

20 of 36

6

12

22

Th = LCM(10, 20, 40) = 40

Static Cyclic Scheduling: Example

Period=deadline Worst case comp. time

1 10 2

2 20 4

3 40 3

4 40 17

System management 10 1

1

2

3

4

10 20 30 40

2

6

12

22

Th = LCM(10, 20, 40) = 40

?
int.

399 19 29
21 of 36

Static Cyclic Scheduling: Example

Period=deadline Worst case comp. time

1 10 2

2 20 4

3 40 3

4 40 17

System management 10 1

1

2

3

4

10 20 30 40

2

6

12

22

26 32

Th = LCM(10, 20, 40) = 40

int.
399 19 29

22 of 36

Static Cyclic Scheduling

◼ Often we have to schedule data dependent tasks; the platform may consist of

several processor nodes. Example earlier lecture:

T1

T8

T7

T3

T5 T6

T4

T2

T1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54Time

p3

p4

bus

T3 T8

T2

T6 T7

T5 T4

C1-2

23 of 36

C5-7C3-5 C4-8

24 of 36

What is Good with Static Cyclic Scheduling?

◼ High predictability

◼ Easy to debug

◼ Low execution time overhead (not much to do for the real-time kernel during

execution time)

25 of 36

What is Bad with Static Cyclic Scheduling?

◼ Not flexible:

 quality degrades rapidly if periods and execution times deviate from those

predicted;

 if new tasks are added, the whole schedule has to be regenerated.

◼ Urgent events (interrupts) are handled purely:

 time slots are statically allocated for polling and handling such events.

◼ Very long hyper-periods have to be avoided:

 the periods of individual tasks have to be adjusted;

this can lead to artificially reduced periods  artificially increased load

 waste of processor time.

◼ Tasks have to be “manually” split, in order to fit into available slots.

26 of 36

Priority Based Preemptive Scheduling

◼ No schedule (predetermined activation times) is generated off-line. Tasks are

activated as response to events (e.g. arrival of a signal, message, etc.).

◼ At any given time the highest priority ready task is running.

If several tasks are ready to be activated on a processor, the highest priority task

will be executed.

◼ Tasks can be preempted at any moment.

If a task becomes ready to be executed (the respective event has occurred), and

it has a higher priority than the running task, the running task will be preempted

and the new one will execute.

Priority Based Preemptive Scheduling

◼ No schedule (predetermined activation times) is generated off-line. Tasks are

activated as response to events (e.g. arrival of a signal, message, etc.).

◼ At any given time the highest priority ready task is running.

If several tasks are ready to be activated on a processor, the highest priority task

will be executed.

◼ Tasks can be preempted at any moment.

If a task becomes ready to be executed (the respective event has occurred), and

it has a higher priority than the running task, the running task will be preempted

and the new one will execute.

◼ Will the tasks meet their deadlines?

Schedulability analysis tries to answer this question.

27 of 36

28 of 36

Schedulability Analysis

◼ As result of research in real-time systems, a mathematical apparatus has been

developed or schedulability analysis.

These results are in form of conditions which can be used in order to check if a

certain task set is schedulable (all tasks meet their deadline) or not.

◼ Schedulability analysis can be based on

 Sufficient conditions (sometimes too pessimistic).

 Necessary and sufficient conditions (sometimes difficult to apply).

◼ We will show some of the simpler formulas, only to give a “feeling”.

Schedulability Analysis

Example from

previous lecture:

P

2 1

3

Does this work?

Can each of the tasks work at the

required rate (period)?

◼ 1 needs to run for 40 s every 100 s: 40% of CPU

◼ 2 needs to run for 10 s every 30 s: 33% of CPU

◼ 3 needs to run for 10 s every 25 s: 40% of CPU

Total: 113%

This will not work!

Task 1

Period T1 = 100 s

WCET C1 = 40 s

Task 2

Period T2 = 30 s

WCET C2 = 10 s

Task 3

29 of 36

Period T3 = 25 s

WCET C3 = 10 s

Schedulability Analysis

Example from

previous lecture:

P

2 1

3

Does this work?

Can each of the tasks work at the

required rate (period)?

But what if the Total Utilisation is less/equal 100% ?

Will it always work? (Deadline = Period)

Task 1

Period T1 = 100 s

WCET C1 = 10 s

Task 2

Period T2 = 30 s

WCET C2 = 10 s

Task 3

30 of 36

Period T3 = 25 s

WCET C3 = 10 s

Schedulability Analysis

Example from

previous lecture:

P

2 1

3

Does this work?

Can each of the tasks work at the

required rate (period)?

But what if the Total Utilisation is less/equal 100% ?

Will it always work? (Deadline = Period)

DEPENDS!

Task 1

Period T1 = 100 s

WCET C1 = 10 s

Task 2

Period T2 = 30 s

WCET C2 = 10 s

Task 3

31 of 36

Period T3 = 25 s

WCET C3 = 10 s

32 of 36

Schedulability Analysis

◼ A set of n tasks, with period Ti and worst case execution time ci. Their

deadline is equal with their period: di = Ti.

At any moment the run-time monitor lets the task with the closest deadline run

(EDF: Earliest Deadline First scheduling).

33 of 36

Schedulability Analysis

◼ A set of n tasks, with period Ti and worst case execution time ci. Their

deadline is equal with their period: di = Ti.

At any moment the run-time monitor lets the task with the closest deadline run

(EDF: Earliest Deadline First scheduling).

◼ With EDF a sufficient and necessary condition for the task set to be

schedulable is that the total processor load is below/equal 100%:

ci

i = 1
Ti

n

 ----  1

34 of 36

Schedulability Analysis

◼ A set of n tasks, with period Ti and worst case execution time ci. Their

deadline is equal with their period: di = Ti.

Task priorities are statically assigned to tasks (by the designer or operating

system), according to their period: the task with shorter period gets the higher

priority. This is called Rate Monotonic (RM) scheduling.

(This is different from EDF!)

◼ A sufficient (not necessary) condition for the task set to be schedulable:

(This is called the ‘utilization bound’)

c
i

i = 1
Ti

1

 

 n 
n  -- 

 ----  n2 – 1

Utilization Bound (Rate Monotonic Scheduling)

Maximum utilization 69-70% for

large number of tasks

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

100.0%

0 5 10 15 20 25 30 35

U
ti

li
z
a

ti
o

n
b

o
u

n
d

Number of tasks

36 of 36

Schedulability Analysis

◼ A set of n tasks, with period Ti and worst case execution time ci. Arbitrary

deadline: di  Ti (This is different from the previous cases!)

Task priorities are statically assigned, by the designer, and can be arbitrary.

For example: Deadline Monotonic (DM) scheduling, where task priorities are

assigned based on task deadlines (and not periods!)

Schedulability Analysis

◼ A set of n tasks, with period Ti and worst case execution time ci. Arbitrary

deadline: di  Ti (This is different from the previous cases!)

Task priorities are statically assigned, by the designer, and can be arbitrary.

◼ The response time for each task can be calculated based on the following

recurrence relation:

◼ A necessary and sufficient condition for schedulability: ri  di

i i
r = c +

ri

Tk
----- c

k

i
k  hp



This is the

interference

from higher

priority tasks.

37 of 36

Schedulability Analysis

Let us calculate the worst-case response time of Task 1:

r_1 = C_i + ceil(r_1 / T_2) * C_2 + ceil(r_1 / T_3) * C_3

r_1 = 10 + ceil(r_1 / 30) * 10 + ceil(r_1 / 25) * 10

r_1 = 10 * (1 + ceil(r_1 / 30) + ceil(r_1 / 25))

Fixed-point iteration:

r_1,k+1 = 10 * (1 + ceil(r_1,k / 30) + ceil(r_1,k / 25))

Initialize with execution time of Task 1 and start iteration.

Continue as long calculated response time is larger than previous iteration.

i i
r = c +

ri

Tk
----- c

k

i
k  hp



38 of 36

Period T1 = 100 s

WCET C1 = 10 s

LOW Priority

Period T2 = 30 s

WCET C2 = 10 s

MEDIUM Priority

Period T3 = 25 s

WCET C3 = 10 s

HIGH PRIORITY

Worst-case interference

from Task 3

Schedulability Analysis

Fixed-point iteration:

r_1,k+1 = 10 * (1 + ceil(r_1,k / 30) + ceil(r_1,k / 25))

r_1,0 = C_1 = 10

r_1,1 = 10 * (1 + ceil(10 / 30) + ceil(10 / 25)) = 10 * (1 + 1 + 1) = 30

r_1,2 = 10 * (1 + ceil(30 / 30) + ceil(30 / 25)) = 10 * (1 + 1 + 2) = 40

r_1,3 = 10 * (1 + ceil(40 / 30) + ceil(40 / 25)) = 10 * (1 + 2 + 2) = 50

r_1,4 = 10 * (1 + ceil(50 / 30) + ceil(50 / 25)) = 10 * (1 + 2 + 2) = 50 STOP!

Worst-case response time of task 1 is 50.

Less than the deadline (period) that is 100.

Task 1 is schedulable!

Repeat the process for Task 2 (simpler equation) and Task 3 (trivial).

39 of 36

40 of 36

Schedulability Analysis

◼ Schedulability conditions exist today that handle more general systems:

 Deadlines which can be larger than the period

 Tasks with share critical resources

 Multiprocessors

	Slide 1: System Design and Methodology / Embedded Systems Design IX. Real Time Embedded Systems
	Slide 2: REAL-TIME EMBEDDED SYSTEMS: TASK SCHEDULING
	Slide 3
	Slide 4: Real-Time Systems
	Slide 5: Real-Time Systems: Some Typical Features
	Slide 6: Soft and Hard Real-Time Systems
	Slide 7: Soft and Hard Real-Time Systems
	Slide 8: Soft and Hard Real-Time Systems
	Slide 9: Soft and Hard Real-Time Systems
	Slide 10: Predictability
	Slide 11: Predictability
	Slide 12: Predictability
	Slide 13: Task Scheduling
	Slide 14: Task Parameters
	Slide 15: Scheduling Policies
	Slide 16: Scheduling Policies
	Slide 17: Scheduling Policies
	Slide 18: Static Cyclic Scheduling
	Slide 19: Static Cyclic Scheduling: Example
	Slide 20: Static Cyclic Scheduling: Example
	Slide 21: Static Cyclic Scheduling: Example
	Slide 22: Static Cyclic Scheduling: Example
	Slide 23: Static Cyclic Scheduling
	Slide 24: What is Good with Static Cyclic Scheduling?
	Slide 25: What is Bad with Static Cyclic Scheduling?
	Slide 26: Priority Based Preemptive Scheduling
	Slide 27: Priority Based Preemptive Scheduling
	Slide 28: Schedulability Analysis
	Slide 29: Schedulability Analysis
	Slide 30: Schedulability Analysis
	Slide 31: Schedulability Analysis
	Slide 32: Schedulability Analysis
	Slide 33: Schedulability Analysis
	Slide 34: Schedulability Analysis
	Slide 35: Utilization Bound (Rate Monotonic Scheduling)
	Slide 36: Schedulability Analysis
	Slide 37: Schedulability Analysis
	Slide 38: Schedulability Analysis
	Slide 39: Schedulability Analysis
	Slide 40: Schedulability Analysis

